THE CARMICHAEL NUMBERS UP TO 10^{21}

RICHARD G.E. PINCH

Abstract

We extend our previous computations to show that there are 20138200 Carmichael numbers up to 10^{21}. As before, the numbers were generated by a back-tracking search for possible prime factorisations together with a "large prime variation". We present further statistics on the distribution of Carmichael numbers.

1. Introduction

A Carmichael number N is a composite number N with the property that for every b prime to N we have $b^{N-1} \equiv 1 \bmod N$. It follows that a Carmichael number N must be square-free, with at least three prime factors, and that $p-1 \mid N-1$ for every prime p dividing N : conversely, any such N must be a Carmichael number.

For background on Carmichael numbers and details of previous computations we refer to our previous paper [1]: in that paper we described the computation of the Carmichael numbers up to 10^{15} and presented some statistics. These computations have since been extended to $10^{16}[2], 10^{17}[3], 10^{18}$ [4] and now to 10^{21}, using similar techniques, and we present further statistics.

2. Organisation of the search

We used improved versions of strategies first described in [1].
The principal search was a depth-first back-tracking search over possible sequences of primes factors p_{1}, \ldots, p_{d}. Put $P_{r}=\prod_{i=1}^{r} p_{i}, Q_{r}=\prod_{i=r+1}^{d} p_{i}$ and $L_{r}=\operatorname{lcm}\left\{p_{i}-1: i=1, \ldots, r\right\}$. We find that Q_{r} must satisfy the congruence $N=P_{r} Q_{r} \equiv 1 \bmod L_{r}$ and so in particular $Q_{d}=p_{d}$ must satisfy a congruence modulo L_{d-1} : further $p_{d}-1$ must be a factor of $P_{d-1}-1$. We modified this to terminate the search early at some level r if the modulus L_{r} is large enough to limit the possible values of Q_{r}, which may then be factorised directly.

We also employed the variant based on proposition 2 of [1] which determines the finitely many possible pairs $\left(p_{d-1}, p_{d}\right)$ from P_{d-2}. In practice this was useful only when $d=3$ allowing us to determine the complete list of Carmichael numbers with three prime factors up to 10^{21}.
2.1. A large prime variation. Finally we employed a different search over large values of p_{d}, in the range $2.10^{6}<p_{d}<10^{10.5}$, using the property that $P_{d-1} \equiv$ $1 \bmod \left(p_{d}-1\right)$.

If q is a prime in this range, we let P run through the arithmetic progression $P \equiv 1 \bmod q-1$ in the range $q<P<X / q$ where $X=10^{21}$. We first check whether $N=P q$ satisfies $2^{N} \equiv 2 \bmod N$: it is sufficient to test whether $2^{N} \equiv 2 \bmod P$ since the congruence modulo q is necessarily satisfied. If this condition is satisfied we factorise P and test whether $N \equiv 1 \bmod \lambda(N)$.

The approximate time taken for $X^{t} \leq q<X^{1 / 2}$ is

$$
\sum_{X^{t}<q<X^{1 / 2}} \frac{X}{q^{2}} \approx X^{1-t}
$$

[^0]
3. Statistics

n	$C\left(10^{n}\right)$
3	1
4	7
5	16
6	43
7	105
8	255
9	646
10	1547
11	3605
12	8241
13	19279
14	44706
15	105212
16	246683
17	585355
18	1401644
19	3381806
20	8220777
21	20138200

Table 1. Distribution of Carmichael numbers up to 10^{21}.

| X | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | total |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 4 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
| 5 | 12 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
| 6 | 23 | 19 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43 |
| 7 | 47 | 55 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 105 |
| 8 | 84 | 144 | 27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 255 |
| 9 | 172 | 314 | 146 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 646 |
| 10 | 335 | 619 | 492 | 99 | 2 | 0 | 0 | 0 | 0 | 0 | 1547 |
| 11 | 590 | 1179 | 1336 | 459 | 41 | 0 | 0 | 0 | 0 | 0 | 3605 |
| 12 | 1000 | 2102 | 3156 | 1714 | 262 | 7 | 0 | 0 | 0 | 0 | 8241 |
| 13 | 1858 | 3639 | 7082 | 5270 | 1340 | 89 | 1 | 0 | 0 | 0 | 19279 |
| 14 | 3284 | 6042 | 14938 | 14401 | 5359 | 655 | 27 | 0 | 0 | 0 | 44706 |
| 15 | 6083 | 9938 | 29282 | 36907 | 19210 | 3622 | 170 | 0 | 0 | 0 | 105212 |
| 16 | 10816 | 16202 | 55012 | 86696 | 60150 | 16348 | 1436 | 23 | 0 | 0 | 246683 |
| 17 | 19539 | 25758 | 100707 | 194306 | 172234 | 63635 | 8835 | 340 | 1 | 0 | 585355 |
| 18 | 35586 | 40685 | 178063 | 414660 | 460553 | 223997 | 44993 | 3058 | 49 | 0 | 1401644 |
| 19 | 65309 | 63343 | 306310 | 849564 | 1159167 | 720406 | 196391 | 20738 | 576 | 2 | 3381806 |
| 20 | 120625 | 98253 | 514381 | 1681744 | 2774702 | 2148017 | 762963 | 114232 | 5804 | 56 | 8220777 |
| 21 | 224763 | 151566 | 846627 | 3230120 | 6363475 | 6015901 | 2714473 | 547528 | 42764 | 983 | 20138200 |

Table 2. Values of $C(X)$ and $C(d, X)$ for $d \leq 10$ and X in powers of 10 up to 10^{21}.

We have shown that there are 20138200 Carmichael numbers up to 10^{21}, all with at most 12 prime factors. We let $C(X)$ denote the number of Carmichael numbers less than X and $C(d, X)$ denote the number with exactly d prime factors. Table 1 gives the values of $C(X)$ and Table 2 the values of $C(d, X)$ for X in powers of 10 up to 10^{21}.

References

[1] Richard G.E. Pinch, The Carmichael numbers up to 10^{15}, Math. Comp. 61 (1993), 381-391, Lehmer memorial issue.
[2] \qquad , The Carmichael numbers up to 10^{16}, March 1998, arXiv:math.NT/9803082.
[3] \qquad , The Carmichael numbers up to 10^{17}, April 2005, arXiv:math.NT/0504119.
[4] , The Carmichael numbers up to 10^{18}, April 2006, arXiv:math.NT/0604376.

2 Eldon Road, Cheltenham, Glos GL52 6TU, U.K.
E-mail address: rgep@chalcedon.demon.co.uk

[^0]: Date: 15 May 2007.

